Anna Wicher

Institute of Mathemtics Pedagogical University of Cracow

ASTUCON 15 - 19 NOVEMBER 2017

Let $\mathcal H$ be a finite - dementional Hilbert space. Then the operator $T\colon \mathcal H\to \mathcal H$ is *linear* if

$$\forall x, y \in \mathcal{H} \quad \forall \alpha, \beta \in \mathbb{C} \quad T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

Definition

Let $\mathcal H$ be a finite - dementional Hilbert space. The linear operator $T\colon \mathcal H\to \mathcal H$ is bounded, when

$$\exists M \in \mathbb{R}_+ \ ||Tx|| \leqslant M||x||, \ \forall x \in \mathcal{H}.$$

Let $\mathcal H$ be a finite - dementional Hilbert space. Then the operator $T\colon \mathcal H\to \mathcal H$ is *linear* if

$$\forall x, y \in \mathcal{H} \quad \forall \alpha, \beta \in \mathbb{C} \quad T(\alpha x + \beta y) = \alpha T(x) + \beta T(y).$$

Definition

Let $\mathcal H$ be a finite - dementional Hilbert space. The linear operator $T\colon \mathcal H\to \mathcal H$ is bounded, when

$$\exists M \in \mathbb{R}_+ \ ||Tx|| \leqslant M||x||, \ \forall x \in \mathcal{H}.$$

We define $\mathcal{L}(\mathcal{H})$ - the space of linear bounded operators, i.e.

$$\mathcal{L}(\mathcal{H}) = \{ T : \mathcal{H} \to \mathcal{H}, T - linear, bounded \}.$$

Theorem

Let $\mathcal{L}(\mathbb{C}^n) = \{T : \mathbb{C}^n \to \mathbb{C}^n, T - liniowy\}$ be a space of bounded linear operators. Let $B = (e_1, \dots, e_n)$ be a orthonormal base in \mathbb{C}^n and $M_n(\mathbb{C}) = \{A_n = [a_{ij}] : a_{ij} \in \mathbb{C}, i, j = 1, 2, \dots, n\}$. Then

$$L(\mathbb{C}^n) \simeq M_{n\times n}(\mathbb{C}).$$

In particular for $A \in L(\mathbb{C}^n)$, $i, j \in \{1, 2, ..., n\}$ we have

$$A \simeq [a_{kl}] = [\langle Ae_l, e_k \rangle]_{\substack{k=1,\ldots,n \\ l=1,\ldots,n}} = \begin{bmatrix} \langle Ae_1, e_1 \rangle & \langle Ae_2, e_1 \rangle & \cdots & \langle Ae_n, e_1 \rangle \\ \langle Ae_1, e_2 \rangle & \langle Ae_2, e_2 \rangle & & \langle Ae_n, e_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle Ae_1, e_n \rangle & \langle Ae_2, e_n \rangle & \cdots & \langle Ae_n, e_n \rangle \end{bmatrix}$$

We define $\mathcal{L}(\mathcal{H})$ - the space of linear bounded operators, i.e.

$$\mathcal{L}(\mathcal{H}) = \{T : \mathcal{H} \to \mathcal{H}, T - linear, bounded\}.$$

$\mathsf{Theorem}$

Let $\mathcal{L}(\mathbb{C}^n) = \{T : \mathbb{C}^n \to \mathbb{C}^n, T - liniowy\}$ be a space of bounded linear operators. Let $B=(e_1,\ldots,e_n)$ be a orthonormal base in \mathbb{C}^n and $M_n(\mathbb{C}) = \{A_n = [a_{ii}] : a_{ii} \in \mathbb{C}, i, j = 1, 2, ..., n\}$. Then

$$L(\mathbb{C}^n) \simeq M_{n\times n}(\mathbb{C}).$$

In particular for $A \in L(\mathbb{C}^n)$, $i, j \in \{1, 2, ..., n\}$ we have

$$A \simeq [a_{kl}] = [\langle Ae_l, e_k \rangle]_{\substack{k=1,\dots,n \\ l=1,\dots,n}} = \begin{bmatrix} \langle Ae_1, e_1 \rangle & \langle Ae_2, e_1 \rangle & \cdots & \langle Ae_n, e_1 \rangle \\ \langle Ae_1, e_2 \rangle & \langle Ae_2, e_2 \rangle & & \langle Ae_n, e_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle Ae_1, e_n \rangle & \langle Ae_2, e_n \rangle & \cdots & \langle Ae_n, e_n \rangle \end{bmatrix}.$$

 \mathcal{F}_k - the set of all linear bounded operators in \mathcal{H} with the rank less or equal to $k \in \mathbb{N}$.

Definition

Let $A \in \mathcal{M}_n(\mathbb{C})$. The *trace* of square matrix $A = [a_{ij}]$ is the sum of all elements of main diagonal, i.e.

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

\mathcal{F}_k - the set of all linear bounded operators in \mathcal{H} with the rank less or equal to $k \in \mathbb{N}$.

Definition

Let $A \in \mathcal{M}_n(\mathbb{C})$. The *trace* of square matrix $A = [a_{ij}]$ is the sum of all elements of main diagonal, i.e.

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

The space \mathcal{S}_{\perp} is said to be *preannihilator* of $\mathcal{S} \subset \mathcal{L}(\mathcal{H})$ if

$$S_{\perp} = \{ T \in \mathcal{F}_n \colon \operatorname{tr}(AT) = 0, A \in \mathcal{S} \}.$$

Preannihilator

Example

Let us take $\mathcal{S} \subset \mathcal{L}(\mathbb{C}^2)$ and $\mathcal{S} = \left\{ \begin{vmatrix} a & b \\ 0 & a \end{vmatrix} : a, b \in \mathbb{C} \right\}$.

$$\operatorname{tr}\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = \operatorname{tr}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = t_1 + t_4,$$

$$\operatorname{tr}\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = \operatorname{tr}\begin{bmatrix}t_3 & t_4\\0 & 0\end{bmatrix} = t_3.$$

Example

Let us take $\mathcal{S}\subset\mathcal{L}(\mathbb{C}^2)$ and $\mathcal{S}=\left\{ egin{array}{c|c} a & b \ 0 & a \end{array} : a,b\in\mathbb{C}
ight\}.$

Let us determine the preannnihilator

$$\operatorname{tr}\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = \operatorname{tr}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = t_1 + t_4,$$

$$\operatorname{tr}\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\begin{bmatrix}t_1 & t_2\\t_3 & t_4\end{bmatrix} = \operatorname{tr}\begin{bmatrix}t_3 & t_4\\0 & 0\end{bmatrix} = t_3.$$

Now we have

$$\begin{cases} t_1 + t_4 = 0 \\ t_3 = 0 \end{cases}$$

Finally

$$\mathcal{S}_{\perp} = \Big\{ \begin{bmatrix} t_1 & t_2 \\ 0 & -t_1 \end{bmatrix} : \, t_1, t_2 \in \mathbb{C} \Big\} = \operatorname{span} \Big\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Big\}.$$

$$\begin{cases} t_1 + t_4 = 0 \\ t_3 = 0 \end{cases}$$

Finally

$$\mathcal{S}_{\perp} = \left\{ \begin{bmatrix} t_1 & t_2 \\ 0 & -t_1 \end{bmatrix} : t_1, t_2 \in \mathbb{C} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}.$$

Reflexivity and transitivity

Definition

Let $S \subset \mathcal{L}(\mathcal{H})$, $k \in \mathbb{Z}_+$ and let \mathcal{F}_k be the set of all linear operators with the rank equal or lower than k. Then

- (1) S is said to be *k-reflexive* if span $\{S_{\perp} \cap \mathcal{F}_k\} = S_{\perp}$,
- (2) S is said to be *k*-transitive if $S_{\perp} \cap \mathcal{F}_k = \{0\}$,

If k = 1, the space S is said to be transitive or reflexive.

Reflexivity and transitivity

Definition

Let $S \subset \mathcal{L}(\mathcal{H})$, $k \in \mathbb{Z}_+$ and let \mathcal{F}_k be the set of all linear operators with the rank equal or lower than k. Then

- (1) S is said to be *k-reflexive* if span $\{S_{\perp} \cap \mathcal{F}_k\} = S_{\perp}$,
- (2) S is said to be *k*-transitive if $S_{\perp} \cap \mathcal{F}_k = \{0\}$,

If k = 1, the space S is said to be transitive or reflexive.

The space of cyclic matrices

Example 1.

Let S to be the space of 3×3 cyclic matrices, i.e.

$$\mathcal{S} = \left\{ egin{bmatrix} a_1 & a_2 & a_3 \ a_3 & a_1 & a_2 \ a_2 & a_3 & a_1 \end{bmatrix} : a_1, a_2, a_3 \in \mathbb{C}
ight\}.$$

The space S is transitive and 2- reflexive.

$$\mathcal{S}_{\perp} = \left\{ egin{bmatrix} t_1 & t_2 & t_3 \ t_4 & t_5 & t_6 \ -t_2-t_6 & -t_3-t_4 & -t_1-t_5 \end{bmatrix} : t_1, t_2, t_3, t_4, t_5, t_6 \in \mathbb{C}
ight\}$$

or

$$S_{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \right.$$
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix} \right\}.$$

$$\mathcal{S}_{\perp} = \left\{ egin{bmatrix} t_1 & t_2 & t_3 \ t_4 & t_5 & t_6 \ -t_2-t_6 & -t_3-t_4 & -t_1-t_5 \end{bmatrix} : t_1, t_2, t_3, t_4, t_5, t_6 \in \mathbb{C}
ight\}$$

or

$$\mathcal{S}_{\perp} = \text{span} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix} \bigg\}.$$

The space of Toeplitz matrices

Example 2. (Example 3.5 [1])

Let the space $A \subset \mathcal{M}_n$ to be the space of Toeplitz matrices, i.e.

$$\mathcal{A} = \left\{ \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0 \end{bmatrix} \right\},$$

$$\{a_0, a_1, \ldots, a_{n-1}, a_{-1}, \ldots, a_{-n+1}\} \in \mathbb{C}.$$

The space A is 2-reflexive and transitive.

Definition

 $\mathbb{C}^n(\mathbb{C})$ - vector space with inner product $\langle \cdot, \cdot \rangle$. The operator $C: \mathbb{C}^n \to \mathbb{C}^n$ is said to be involution if:

Definition

 $\mathbb{C}^n(\mathbb{C})$ - vector space with inner product $\langle \cdot, \cdot \rangle$. The operator $C: \mathbb{C}^n \to \mathbb{C}^n$ is said to be involution if:

- (i) $C(\alpha z + \beta w) = \bar{\alpha}C(z) + \bar{\beta}C(w)$ $z, w \in \mathbb{C}^n$, $\alpha, \beta \in \mathbb{C}$,
- (ii) $\langle z, w \rangle = \langle Cw, Cz \rangle \ z, w \in \mathbb{C}^n$
- (iii) $C^2 = I_{\mathbb{C}^n}$

Definition

Let $A: \mathbb{C}^n \to \mathbb{C}^n$ is linear

 $A^*: \mathbb{C}^n \to \mathbb{C}^n$ conjugated $\iff \langle Az, w \rangle = \langle z, A^*w \rangle, \ \forall z, w$

The matrix $A^* = \bar{A}^T$

Preannihilators

Definition

 $\mathbb{C}^n(\mathbb{C})$ - vector space with inner product $\langle \cdot, \cdot \rangle$. The operator $C: \mathbb{C}^n \to \mathbb{C}^n$ is said to be involution if:

(i)
$$C(\alpha z + \beta w) = \bar{\alpha}C(z) + \bar{\beta}C(w)$$
 $z, w \in \mathbb{C}^n, \alpha, \beta \in \mathbb{C}$,

(ii)
$$\langle z, w \rangle = \langle Cw, Cz \rangle$$
 $z, w \in \mathbb{C}^n$,

(iii)
$$C^2 = I_{\mathbb{C}^n}$$

$$A^*: \mathbb{C}^n \to \mathbb{C}^n$$
 conjugated $\iff \langle Az, w \rangle = \langle z, A^*w \rangle, \ \forall z, w$

Definition

 $\mathbb{C}^n(\mathbb{C})$ - vector space with inner product $\langle \cdot, \cdot \rangle$. The operator $C: \mathbb{C}^n \to \mathbb{C}^n$ is said to be involution if:

(i)
$$C(\alpha z + \beta w) = \bar{\alpha}C(z) + \bar{\beta}C(w)$$
 $z, w \in \mathbb{C}^n, \alpha, \beta \in \mathbb{C}$,

(ii)
$$\langle z, w \rangle = \langle Cw, Cz \rangle$$
 $z, w \in \mathbb{C}^n$,

(iii)
$$C^2 = I_{\mathbb{C}^n}$$
.

Definition

Let $A: \mathbb{C}^n \to \mathbb{C}^n$ is linear.

$$A^*: \mathbb{C}^n \to \mathbb{C}^n$$
 conjugated $\iff \langle Az, w \rangle = \langle z, A^*w \rangle, \ \forall z, w$

The matrix $A^* = \bar{A}^T$

Definition

 $\mathbb{C}^n(\mathbb{C})$ - vector space with inner product $\langle \cdot, \cdot \rangle$. The operator $C: \mathbb{C}^n \to \mathbb{C}^n$ is said to be involution if:

(i)
$$C(\alpha z + \beta w) = \bar{\alpha}C(z) + \bar{\beta}C(w)$$
 $z, w \in \mathbb{C}^n, \alpha, \beta \in \mathbb{C}$,

(ii)
$$\langle z, w \rangle = \langle Cw, Cz \rangle$$
 $z, w \in \mathbb{C}^n$,

(iii)
$$C^2 = I_{\mathbb{C}^n}$$
.

Definition

Let $A: \mathbb{C}^n \to \mathbb{C}^n$ is linear.

 $A^*: \mathbb{C}^n \to \mathbb{C}^n$ conjugated $\iff \langle Az, w \rangle = \langle z, A^*w \rangle, \ \forall z, w,$

The matrix $A^* = \bar{A}^T$

The examples of C-symmetry

Examples

Let $C: \mathbb{C}^n \to \mathbb{C}^n$.

(1)
$$C(z_1, z_2, \ldots, z_n) = (\bar{z}_1, \bar{z}_2, \ldots, \bar{z}_n)$$

(2)
$$C(z_1, z_2, \dots, z_n) = (\bar{z}_n, \dots, \bar{z}_2, \bar{z}_1)$$
 - cannonical C-symmetry

Definition

Let $C: \mathbb{C}^n \to \mathbb{C}^n$ to be an involution, $A: \mathbb{C}^n \to \mathbb{C}^n$ the linear operator.

The operator A is said to be C-symmetric if $CAC = A^*$,

$$(\iff \langle Az, Cw \rangle = \langle z, CAw \rangle), \quad z, w \in \mathbb{C}^n$$

Definition

Let $C: \mathbb{C}^n \to \mathbb{C}^n$ to be an involution, $A: \mathbb{C}^n \to \mathbb{C}^n$ the linear operator.

The operator A is said to be C-symmetric if $CAC = A^*$,

$$(\iff \langle Az, Cw \rangle = \langle z, CAw \rangle), \quad z, w \in \mathbb{C}^n.$$

Example 1.

Let $C(z_1, z_2, z_3) = (\bar{z}_3, \bar{z}_2, \bar{z}_1)$ to be C-symmetry in \mathbb{C}^3 and let $A(z_1, z_2, z_3) = (iz_1 - iz_2 + 2iz_3, -iz_2 - iz_3, iz_3)$ to be the linear operator in \mathbb{C}^3 .

$$CAC = A^*$$

$$CAC(z_1, z_2, z_3) = (CA)(\bar{z}_3, \bar{z}_2, \bar{z}_1) = C(i\bar{z}_3 - i\bar{z}_2 + 2i\bar{z}_1, -i\bar{z}_2 - i\bar{z}_1, i\bar{z}_1) = (-iz_1, iz_1 + iz_2, -2iz_1 + iz_2 - iz_3) = A^*(z_1, z_2, z_3)$$

Example 1.

Let $C(z_1, z_2, z_3) = (\bar{z}_3, \bar{z}_2, \bar{z}_1)$ to be C-symmetry in \mathbb{C}^3 and let $A(z_1, z_2, z_3) = (iz_1 - iz_2 + 2iz_3, -iz_2 - iz_3, iz_3)$ to be the linear operator in \mathbb{C}^3 .

$$CAC = A^*$$

$$CAC(z_1, z_2, z_3) = (CA)(\bar{z}_3, \bar{z}_2, \bar{z}_1) = C(i\bar{z}_3 - i\bar{z}_2 + 2i\bar{z}_1, -i\bar{z}_2 - i\bar{z}_1, i\bar{z}_1) = (-iz_1, iz_1 + iz_2, -2iz_1 + iz_2 - iz_3) = A^*(z_1, z_2, z_3).$$

Theorem

Let $C: \mathbb{C}^n \to \mathbb{C}^n$, $C(z_1, z_2, \dots, z_n) = (\bar{z}_n, \dots, \bar{z}_2, \bar{z}_1)$, $A = [a_{ii}]$, and let $F = \{e_i\}_{i \in \{1,2,...,n\}}$ be the cannonical base. Then

$$A-C$$
-symmetric $\iff a_{ij}=a_{n-j+1,n-i+1}, \quad i,j\in\{1,2,...,n\}$

$$Ce_i = e_{n-i+1}, i \in \{1, 2, ..., n\}$$

$$a_{ij} = \langle Ae_j, e_i \rangle = \langle Ce_i, CAe_j \rangle = \langle Ce_i, A^*Ce_j \rangle = \langle ACe_i, Ce_j \rangle$$

= $\langle Ae_{n-i+1}, e_{n-i+1} \rangle = a_{n-i+1, n-i+1}$

Theorem

Let $C: \mathbb{C}^n \to \mathbb{C}^n$, $C(z_1, z_2, \dots, z_n) = (\bar{z}_n, \dots, \bar{z}_2, \bar{z}_1)$, $A = [a_{ij}]$, and let $F = \{e_i\}_{i \in \{1, 2, \dots, n\}}$ be the cannonical base. Then

$$A - C$$
-symmetric $\iff a_{ij} = a_{n-j+1, n-i+1}, \quad i, j \in \{1, 2, ..., n\}$

Proof

$$Ce_i = e_{n-i+1}, i \in \{1, 2, ..., n\}$$

Then

$$a_{ij} = \langle Ae_j, e_i \rangle = \langle Ce_i, CAe_j \rangle = \langle Ce_i, A^*Ce_j \rangle = \langle ACe_i, Ce_j \rangle$$

= $\langle Ae_{n-i+1}, e_{n-i+1} \rangle = a_{n-i+1, n-i+1}$

The result of work of K. Kilś, B. Łanuch, M. Ptak, H. Bercovici, D. Timotin, 2017

Let $C_n: \mathbb{C}^n \to \mathbb{C}^n$, $C_{n-1}: \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}$ - cannonical C-symmetry, $A_n \in M_n(\mathbb{C})$, $A_n = [a_{ij}]$, $i, j \in \{1, 2, \dots, n\}$ and A_{n-1} is a minor of matrix A_n formed by cutting off the last column and the last row of the matrix A_n . Moreover, let $A = \{A \in M_n: C_n A_n C_n = A_n^* \land C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^*\}$. Then A is the space of Toeplitz matrices.

The result of work of K. Kilś, B. Łanuch, M. Ptak, H. Bercovici, D. Timotin, 2017

Let $C_n: \mathbb{C}^n \to \mathbb{C}^n$, $C_{n-1}: \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}$ - cannonical C-symmetry, $A_n \in M_n(\mathbb{C})$, $A_n = [a_{ij}]$, $i, j \in \{1, 2, \dots, n\}$ and A_{n-1} is a minor of matrix A_n formed by cutting off the last column and the last row of the matrix A_n . Moreover, let $A = \{A \in M_n: C_n A_n C_n = A_n^* \land C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^*\}$. Then A is the space of Toeplitz matrices.

The result of work of K. Kilś, B. Łanuch, M. Ptak, H. Bercovici, D. Timotin, 2017

Let $C_n: \mathbb{C}^n \to \mathbb{C}^n$, $C_{n-1}: \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}$ - cannonical C-symmetry, $A_n \in M_n(\mathbb{C})$, $A_n = [a_{ij}]$, $i, j \in \{1, 2, \dots, n\}$ and A_{n-1} is a minor of matrix A_n formed by cutting off the last column and the last row of the matrix A_n . Moreover, let

 $A = \{A \in M_n : C_n A_n C_n = A_n^* \wedge C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^* \}$ Then A is the space of Toeplitz matrices.

The result of work of K. Kilś, B. Łanuch, M. Ptak, H. Bercovici, D. Timotin, 2017

Let $C_n : \mathbb{C}^n \to \mathbb{C}^n$, $C_{n-1} : \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}$ - cannonical C-symmetry, $A_n \in M_n(\mathbb{C})$, $A_n = [a_{ij}]$, $i, j \in \{1, 2, \dots, n\}$ and A_{n-1} is a minor of matrix A_n formed by cutting off the last column and the last row of the matrix A_n . Moreover, let

 $\mathcal{A} = \{ A \in M_n \colon C_n A_n C_n = A_n^* \land C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^* \}.$

Then $\mathcal A$ is the space of Toeplitz matrices

The result of work of K. Kilś, B. Łanuch, M. Ptak, H. Bercovici, D. Timotin, 2017

Let $C_n: \mathbb{C}^n \to \mathbb{C}^n$, $C_{n-1}: \mathbb{C}^{n-1} \to \mathbb{C}^{n-1}$ - cannonical C-symmetry, $A_n \in M_n(\mathbb{C})$, $A_n = [a_{ij}]$, $i, j \in \{1, 2, \dots, n\}$ and A_{n-1} is a minor of matrix A_n formed by cutting off the last column and the last row of the matrix A_n . Moreover, let

 $\mathcal{A} = \{A \in M_n \colon \, C_n A_n C_n = A_n^* \wedge \, C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^* \}.$

Then \mathcal{A} is the space of Toeplitz matrices.

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, \dots, n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know,

$$a_{ij}=a_{n-j+1,n-i+1}$$

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, ..., n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know, that

$$a_{ij}=a_{n-j+1,n-i+1}$$

and because $C_{n-1}A_{n-1}C_{n-1}=A_{n-1}^*$ we also know

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

We have the folloving:

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}$$
.

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, ..., n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know, that

$$a_{ij}=a_{n-j+1,n-i+1}$$

and because $C_{n-1}A_{n-1}C_{n-1}=A_{n-1}^*$ we also know

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

We have the folloving:

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, ..., n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know, that

$$a_{ij}=a_{n-j+1,n-i+1}$$

and because $C_{n-1}A_{n-1}C_{n-1}=A_{n-1}^{*}$ we also know

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

We have the folloving:

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, ..., n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know, that

$$a_{ij}=a_{n-j+1,n-i+1}$$

and because $C_{n-1}A_{n-1}C_{n-1}=A_{n-1}^{*}$ we also know

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

We have the folloving:

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

Let we take k := n - j, l := n - i so we have $a_{k+1,l+1} = a_{kl}$.

Proof in finite-dementional space - A. Wicher

Let $i, j \in \{1, 2, ..., n-1\}$, $A_n \in \mathcal{A}$. From $C_n A_n C_n = A_n^*$ we know, that

$$a_{ij}=a_{n-j+1,n-i+1}$$

and because $C_{n-1}A_{n-1}C_{n-1}=A_{n-1}^{*}$ we also know

$$a_{ij} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

We have the folloving:

$$a_{n-j+1,n-i+1} = a_{n-1-j+1,n-1-i+1} = a_{n-j,n-i}.$$

Corollary [A. Wicher]

The space $A = \{A \in M_n : C_n A_n C_n = A_n^* \wedge C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^* \}$ is 2 - reflexive and transitive.

Proof

The space \mathcal{A} is the space of Toeplitz matrices. We know from [Example 3.5 [1]] that this space is 2 - reflexive and transitive.

Corollary [A. Wicher]

The space $A = \{A \in M_n : C_n A_n C_n = A_n^* \wedge C_{n-1} A_{n-1} C_{n-1} = A_{n-1}^* \}$ is 2 - reflexive and transitive.

Proof

The space \mathcal{A} is the space of Toeplitz matrices. We know from [Example 3.5 [1]] that this space is 2 - reflexive and transitive.

Bibliography

E. A. Azoff,

On finite rank operators and preannihilators,

American Mathematical Society 357 (1986).

K. Kliś - Garlicka, M. Ptak, C-symmetric operators and reflexivity,

•

Operators and Matrices 1(2015),225 - 232.

A. Wicher,

Transitivity and reflexivity of C-symmetric operators in Hilbert space,

Prace Koła Mat. Uniw. Ped. w Krak. 3(2017), 1 - 7.

S.R. Garcia, M. Putinar,

Complex Symmetric operators and Applications,

Trans Am. Math. Soc. 358(2005),1285-1315.

S. M. Zagorodnyuk,

A J-Polar Decomposition of a bounded operator and matrices of J-symetric and J-skew symetric operators.

Banach J. Math. Anal. 4 (2010), 11-36.

